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We introduce a systematic method for identifying the worst case load among all boundary 
loads of fixed energy. Here the worst case load is defined to be the one that delivers 
the largest fraction of input energy to a prescribed subdomain of interest. The worst case 
load is identified with the first eigenfunction of a suitably defined eigenvalue problem. The 
first eigenvalue for this problem is the maximum fraction of boundary energy that can be 
delivered to the subdomain. We compute worst case boundary loads and associated energy 
contained inside a prescribed subdomain through the numerical solution of the eigenvalue 
problem. We apply this computational method to bound the worst case load associated 
with an ensemble of random boundary loads given by a second order random process. 
Several examples are carried out on heterogeneous structures to illustrate the method.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Composite materials often fail near structural features where stress can concentrate. Examples include neighborhoods 
surrounding lap joints or bolt holes where composite structures are fastened or joined [13]. Large boundary loads deliver 
energy to the structure and can increase the overall energy near structural features and initiate failure. These considerations 
provide motivation for a better understanding of energy penetration and concentration inside structures associated with 
boundary loading. One possible approach is to apply the Saint-Venant principle [12,10,14,11] to characterize the rate of 
decay of the magnitude of the stress or strain away from the boundary and study its effect on interior subdomains. This 
type of approach provides theoretical insight for homogeneous materials. However for composite structures the decay can 
be slow and far from exponentially decreasing away from the boundary [7]. With this in mind we attempt a more refined 
analysis and address the problem from an energy based perspective. In this paper we examine the proportion of the total 
energy that is contained within a prescribed interior domain of interest in response to boundary displacements or traction 
loads imposed on the composite structure.

We introduce a computational method for identifying the worst case load defined to be the one that delivers the largest 
portion of a given input energy to a prescribed interior domain of interest. The interior domain ω can surround bolted or 
bonded joints where stress can concentrate. Here the interior domain is taken to be a positive distance away from the part 
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Fig. 1. Boundary ∂ω∗ and interior domain ω surrounding bolt hole.

of the external boundary of the structural domain ω∗ where the loads are applied. We show here that it is possible to 
quantify the effects of a worst case load that concentrates the greatest proportion of energy onto ω by a suitably defined 
concentration eigenvalue problem. The largest eigenvalue for the eigenvalue problem is equal to the maximum fraction of 
total elastic energy that can be imparted to the subdomain over all boundary loads. The displacement field associated with 
the worst case load is the eigenfunction associated with the largest eigenvalue.

As an application we use the concentration eigenvalue problem to bound the fraction of energy imparted on a prescribed 
subdomain by the worst case load associated with an ensemble of random loads. While it is possible to consider any type of 
random boundary loading we illustrate the ideas for boundary loads described by a second order random process specified 
in terms of its covariance function and ensemble average.

We conclude noting that related earlier work provides bounds on the local stress and strain amplification generated by 
material microstructure. Of interest is to identify minimum stress microstructures with the lowest field amplification over 
all microstructures [1,4]. These results enable the design of graded microstructures for suppression of local stress inside 
structural components [9,8].

2. Energy concentration inside composite structures

In this section we develop the notion of energy penetration and its associated concentration within a composite structure. 
The structural domain ω∗ is made of a composite material and described by the elastic tensor A(x) taking different values 
inside each component material. The composite structures addressed here are general and include fiber reinforced laminates 
or particle reinforced composites. We suppose that the composite structure is subjected to an ensemble of boundary loads 
applied to either part or to all of the boundary of the structural domain ω∗ . We are interested in the energy concentration 
around features such as a bolt holes or lap joints contained within a known subdomain ω of the structural domain ω∗ . Here 
it is assumed that the boundary of the subdomain ω is of positive distance away from the part of the structural boundary 
where loads are being applied.

The notion of energy concentration applies to both Dirichlet and traction boundary loading. To fix ideas we first consider 
Dirichlet loading. The elastic displacement u is assigned the Dirichlet data g on the exterior boundary of the domain ω∗
denoted by ∂ω∗ . The structural domain ω∗ may be taken to be a bracket or fastener and contain bolt holes away from 
the exterior boundary where loads are applied. The boundaries of these holes are assumed clamped and have zero elastic 
displacement. The collection of these interior boundaries is denoted by ∂ω∗

I , see Fig. 1. The elastic displacement is the 
solution of the linear elastic system inside the structural domain ω∗ given by

div (A(x)e(u(x))) = 0, (1)

where e(u(x)) is the elastic strain e(u(x)) = (∇u(x) + ∇u(x)T )/2 and the elasticity tensor A satisfies the standard ellipticity 
and boundedness conditions:

λ|ζ |2 ≤ A(x)ζ : ζ ≤ �|ζ |2, (2)

where ζ is any constant strain tensor, 0 < λ < � and A(x)ζ : ζ is the elastic energy density given by

A(x)ζ : ζ =
∑
i jkl

Ai jkl(x)ζklζi j (3)

The work done on the boundary ∂ω∗ delivers the total elastic energy inside the structure and is given by

E(g) =
∫

∂ω∗
Ae(u)n · g ds =

∫
ω∗

Ae(u) : e(u)dx, (4)

where n is the outward pointing unit normal and Ae(u)n is the traction and g is the boundary displacement.
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Now fix a subdomain ω of interest with boundary a positive distance away from the structural boundary subjected to 
loading. Here the domain ω can be selected to contain a bolt hole or other interior feature of the structure, see Fig. 1. The 
elastic energy inside this subdomain is written

(u, u)E(ω) =
∫
ω

A(x)e(u) : e(u)dx, (5)

and the total elastic energy in the structure is written

(u, u)E(ω∗) =
∫
ω∗

Ae(u) : e(u)dx. (6)

The energy norms for the subdomain and structure are written as

‖u‖2
E(ω) = (u, u)E(ω) (7)

and

‖u‖2
E(ω∗) = (u, u)E(ω∗) = E(g), (8)

and the fraction of the total elastic energy in the structure that is contained inside the subdomain ω is given by the ratio

P (g) = ‖u‖2
E(ω)

E(g)
= ‖u‖2

E(ω)

‖u‖2
E(ω∗)

. (9)

We define P (g) to be the energy concentration function associated with the boundary displacement g . Collecting our 
observations we have

P (g) = ‖u‖2
E(ω)

‖u‖2
E(ω∗)

: with div (A(x)e(u(x))) = 0 and u = g on ∂ω∗ . (10)

We proceed to identify the worst case displacement over all boundary data g associated with solutions of the elastic 
system that have square integrable displacements and strain tensors on ω∗ . On the interior boundary ∂ω∗

I we assume 
clamped boundary conditions for the elastic displacement. We denote this space of displacements by H1

I0(ω
∗) and the 

associated boundary displacements on ∂ω∗ reside in the space H1/2(∂ω∗). It is well known that each boundary displacement 
in H1/2(∂ω∗) corresponds to a unique solution u of the elastic system in H1

I0(ω∗), see [6]. Conversely every solution u of 
the elastic system in H1

I0(ω
∗) has boundary values in H1/2(∂ω∗). The worst case displacement g̃ on ∂ω∗ for the domain ω

delivers the maximum energy concentration

P (g̃) = max
{

P (g) : g in H1/2(∂ω∗)
}
. (11)

We now state the theorem which identifies the worst case displacement g̃ in H1/2(∂ω∗).

Theorem 1. The variational problem given by

V = sup

{ ‖u‖2
E(ω)

‖u‖2
E(ω∗)

: u in H1
I0(ω

∗) with div (A(x)e(u(x))) = 0

}
(12)

has a maximum ũ and the maximum energy concentration inside ω is given by

V = P (g̃) = max
{

P (g) : g in H1/2(∂ω∗)
}
, (13)

where the worst case displacement is given by the boundary value of ũ on ∂ω∗ . Moreover, the stationary point ũ and stationary value 
V are identified as the eigenfunction eigenvalue pair associated with the solution to the penetration eigenvalue problem given by:

Find u and λ for which u belongs to H1
I0(ω

∗) and is a solution of div (A(x)e(u(x))) = 0, for x in ω∗ , and

λ(u, v)E(ω∗) = (u, v)E(ω), (14)

for all trial fields v belong to the space of all solutions of div (A(x)e(v(x))) = 0, that belong to H1
I0(ω

∗).

Remark 1. The maximum ũ may not be unique. If the eigenspace corresponding to the largest eigenvalue of (14) has 
dimension greater than 1, then the maximum V is attained by any vector u in this eigenspace.
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It is clear from the formulation that V does not depend on boundary load but is instead dependent only on the geometry 
of the boundary of the specimen ω∗ , the shape and location of ω, and the microstructure associated with the composite 
material contained inside the structure. A simple example illustrating the nature of V is given by the anti-plane shear 
problem associated with a homogeneous prismatic shaft with circular cross-section ω∗ of radius 1. The shaft is made 
from homogeneous isotropic elastic material with specified shear and bulk moduli. On choosing ω to be a disk of radius r
centered inside ω∗ a simple calculation shows that V = r. What is notable is that the maximum fraction of energy that can 
be delivered to ω scales as r as opposed to the area fraction of the disk which scales as r2.

Next we consider the computation of the worst case traction load and its associated energy concentration. Traction 
loading t = Ae(u)n is applied to the boundary of the domain ∂ω∗ and the elastic displacement is the solution of the linear 
elastic system inside the structural domain ω∗ given by

div (A(x)e(u(x))) = 0. (15)

For this case one considers all traction loads t belonging to the space H−1/2(∂ω∗). This space corresponds to all traction 
boundary values associated with H1

I0(ω∗) solutions of (15). The work done against the applied traction t is equal to the 
total elastic energy and we write

E(t) =
∫

∂ω∗
t · uds = ‖u‖2

E(ω∗). (16)

The fraction of the total elastic energy in the structure that is contained inside the subdomain ω is given by the ratio

P (t) = ‖u‖2
E(ω)

E(t)
= ‖u‖2

E(ω)

‖u‖2
E(ω∗)

. (17)

Here we refer to P (t) as the energy concentration function associated with the boundary traction t . The maximum energy 
concentration inside ω is given by

P (t̃) = max
{

P (t) : t in H−1/2(∂ω∗)
}

(18)

We now proceed as before and state the theorem which identifies the worst case traction t̃ in H−1/2(∂ω∗).

Theorem 2. The variational problem given by

V = sup

{ ‖u‖2
E(ω)

‖u‖2
E(ω∗)

: u in H1
I0(ω

∗) with div (A(x)e(u(x))) = 0

}
(19)

has a maximum ũ and the maximum energy concentration inside ω is given by

V = P (t̃) = max
{

P (t) : t in H−1/2(∂ω∗)
}
, (20)

and the worst case traction is given by Ae(ũ)n on ∂ω∗ .
Moreover the maximizer ũ and V are the same eigenfunction eigenvalue pair associated with the solution to the concentration 

eigenvalue problem (14).

Remark 2. It is important to note that Theorems 1 and 2 apply to the concentration of energy inside ω associated with 
work done on the boundary so ũ and V are the same for the cases of applied traction and applied displacement.

In this paper we will compute the worst case boundary loads and associated maximum energy concentration through 
the numerical solution of the concentration eigenvalue problem (14). Theorems 1 and 2 identify the space of test and trial 
functions for use in the computation of the maximum energy concentration V and associated elastic field ũ. This space is 
denoted by HA(ω∗) and is the space of all functions belonging to H1

I0(ω∗) that are solutions of div(Ae(u)) = 0. In Section 4
we provide a numerical method for computing the maximum energy concentration and worst case load by finding u in 
HA(ω∗) and λ for which

λ(u, v)E(ω∗) = (u, v)E(ω), (21)

for all trial fields v belong to HA(ω∗).

Remark 3. We conclude noting that the concentration eigenvalue problem (21) corresponds to the largest singular value of 
the restriction operator P defined by P(u) = u for x in ω where P acts on the space HA(ω∗), see [2] and [3]. It is shown 
there that the associated set of singular values decay nearly exponentially and that the associated eigenfunctions of P∗P
are a complete orthogonal system for the space HA(ω∗).
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3. Energy concentration due to random boundary data

In this section we introduce random loading on the boundary of the domain ω∗ and describe the expected value of the 
energy concentration associated with the ensemble of random loads. We show that this quantity is bounded above by the 
maximum energy concentration obtained through the solution of the eigenvalue problem (21). It is possible to consider any 
type of random boundary loading; however, to fix ideas we assume in this treatment that the loading is a second order 
random process with specified covariance and expectation. In what follows we apply the Kosambi–Karhunen–Loeve (KKL) 
expansion (cf. [5]) of the random boundary displacement, g with average, ḡ(x), and mean zero fluctuation, α(x, θ), as

g(x, θ) = ḡ(x) + α(x, θ). (22)

We assume, with no loss of generality, that ḡ(x) and α(x, θ) belong to H1/2(∂ω∗). Where α(x, θ) is a zero mean, second 
order stochastic process with covariance function C(x1, x2) defined for points x1 and x2 on ∂ω∗ . The corresponding KKL 
expansion of g(x, θ) is given by

g(x, θ) = ḡ(x) +
∞∑

n=0

√
μnψn(θ)g̃n(x) (23)

where the deterministic functions g̃n(x) and parameters μn are the eigenfunctions and eigenvalues of the integral equation∫
∂ω∗

C(x1, x)ĝn(x, θ)ds = μn ĝn(x1, θ), for x1 on ∂ω∗, (24)

where ds is the surface measure with respect to the x variable. The mean zero random variables, ψn(θ), are determined by

ψn(θ) = 1√
μn

∫
∂ω∗

α(x, θ)ĝn(x)ds (25)

and the functions ψn(θ) and ĝn(x) satisfy the orthonormality conditions

〈ψm(θ)ψn(θ)〉 = δmn (26)∫
∂ω∗

ĝm(x) · ĝm(x)ds = δmn (27)

for the Kronecker delta function, δmn , and expectation value, 〈·〉. The set of all random boundary conditions g(x, θ) associated 
with mean ḡ(x) and covariance C(x1, x2) is denoted by R(∂ω∗). Using the KKL expansion (23) in (1), and by linearity, we 
have an expansion of the solution

u(x, θ) = ū(x) +
∞∑

n=0

√
μnψn(θ)ûn(x) (28)

where ū(x) is the solution of{
divAeū = 0 in ω∗

ū = ḡ on ∂ω∗ (29)

and ûn(x, θ) is the solution of{
divAeûn = 0 in ω∗

ûn = ĝn on ∂ω∗ (30)

Then ū(x) is the displacement due to the ensemble average boundary data, ḡ(x), and

∞∑
n=0

√
μnψn(θ)ûn(x) (31)

is the displacement due to the random fluctuations in the boundary data. The boundary data is approximated by truncating 
(23) after N terms giving the approximate solution

uN(x, θ) = ū(x) +
N∑√

μnψn(θ)ûn(x) (32)

n=0
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The expectation value of the energy of u over ω∗ is denoted by E(ω∗). For this case we apply the orthonormality condition 
(26) to get

E(ω∗) = 〈
(u, u)E(ω∗)

〉 = ‖ū‖2
E(ω∗) +

∞∑
n=0

μn‖ûn‖2
E(ω∗) (33)

Truncating the sum after N terms gives the approximation uN and the approximate expected value of the energy is given 
by

EN(ω∗) = ‖ū‖2
E(ω∗) +

N∑
n=0

μn‖ûn‖2
E(ω∗) (34)

The expected value of the energy, E(ω), which concentrates within the domain of interest, ω, is defined

E(ω) = 〈
(u, u)E(ω)

〉 = ‖ū‖2
E(ω) +

∞∑
n=0

μn‖ûn‖2
E(ω) (35)

with truncation

EN(ω) = 〈
(uN , uN)E(ω)

〉 = ‖ū‖2
E(ω) +

N∑
n=0

μn‖ûn‖2
E(ω), (36)

where the orthogonality conditions (26) are used to obtain the right most equalities. The ratio

P = E(ω)

E(ω∗)
(37)

is a measure of the expected proportion of energy that is contained within the domain of interest, ω, due to the random 
boundary conditions. Its truncation P N is defined by

P N = EN(ω)

EN(ω∗)
. (38)

We now consider the maximum energy concentration P (R) into the subdomain ω associated with the worst possible 
load g(x, θ) in R(ω∗). The maximum energy concentration is defined as

P (R) = max {P (g) : g = g(x, θ) in R(∂ω∗)} (39)

where P (g) is the energy concentration associated with the boundary displacement given by (10). It is evident from Theo-
rem 1 that we have the inequalities

P ≤ P (R) ≤ V . (40)

From the definition of P (R) we have

‖u‖2
E(ω) ≤ P (R)‖u‖2

E(ω∗). (41)

Applying the expectation 〈·, ·〉 the first inequality in (40) follows.
In the following sections we obtain bounds on the maximum energy concentration P (R) by computing V . The maxi-

mum energy concentration V is computed through the solution of the eigenvalue problem (21). In Section 5 we compare 
computed values of the expected energy concentration P with the computed values of V for different structural components 
made from reinforced composite materials.

4. Computational approach

In this section we outline our method for computing the expected energy concentration P associated with random 
boundary loading as well as the computation of the maximum energy concentration V through the solution of the 
eigenvalue problem (21). We illustrate the method for the antiplane shear problem. For this case u is the out of plane 
displacement inside a long prismatic shaft and ω∗ is the shaft cross-section. For the purpose of computation we consider 
polygonal domains ω∗ . The out of plane deformation u is the solution of⎧⎪⎨

⎪⎩
div (c(x)∇u(x, θ)) = 0 in ω∗

u(x, θ) = g(x, θ) on ∂ω∗

u(x, θ) = 0 on ∂ω∗
(42)
I
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where the coefficient c(x) is the shear modulus taking different values inside each component material. From (23) the 
random boundary displacement is given by u(x, θ) = ḡ(x) + g(x, θ) with

g(x, θ) =
∞∑

n=0

√
μnψn(θ)ĝn(x) (43)

and we choose the Markovian covariance function

C(x1, x2) = e−|x1−x2|/b (44)

where b is the correlation length with the same units as x. The domain of interest ω has boundary a positive distance away 
from ∂ω∗ . Closed form solutions for the sequence {ĝn}∞n=1 appearing in (43) are obtained through the solution of

a∫
−a

C(x, x1)ĝn(x, θ)dx = μn ĝn(x1, θ), for x1 on (−a,a), (45)

as in [5, page 31] and given by

ĝn(x) = cos(γnx)√
a + sin(γn)

2γn

,μn = 2c

γ 2
n + c2

ĝ′
n(x) = sin(γ ′

nx)√
a − sin(γ ′

n)

2γ ′
n

,μ′
n = 2c

γ ′2
n + c2

(46)

where c = 1/b and γn, γ ′
n ≥ 0 are solutions to the equations{

c − γ tan(γ a) = 0

γ ′ + c tan(γ a) = 0.
(47)

The random boundary data on ∂ω∗ is provided by mapping the one dimensional KKL solutions (46) defined on the interval 
(−a, a) onto the boundary of ω∗ . The expected energy concentration P is given by

P = ‖ū‖2
E(ω) + ∑∞

n=0 μn‖ûn‖2
E(ω)

‖ū‖2
E(ω∗) + ∑∞

n=0 μn‖ûn‖2
E(ω∗)

, (48)

where ûn and û′
n are the solutions to (42) with mapped boundary data ĝn and ĝ′

n , respectively. In the simulations we apply 
the standard finite element method to calculate the expected energy concentration truncated after N terms given by

P N = ‖ū‖2
E(ω) + ∑N

n=0 μn‖ûn‖2
E(ω)

‖ū‖2
E(ω∗) + ∑N

n=0 μn‖ûn‖2
E(ω∗)

. (49)

Next we outline the strategy for numerical solution of the eigenvalue problem (21).

1. In the first step we build a suitably large finite dimensional subspace of HA(ω∗). An n-dimensional basis {ψ1, ψ2, . . . ,
ψn} of discreet solutions to

div(c(x)∇u(x)) = 0 for x in ω∗

is generated from FE solutions associated with a suitable n-dimensional set of linearly independent boundary data 
posed over ∂ω∗ . Here the n-dimensional basis of boundary data is generated by hat functions supported on ∂ω∗ . On 
the interior boundary ∂ω∗

I the discrete solutions satisfy the clamped boundary condition u = 0.
2. The second step is to employ the n-dimensional basis of discrete solutions as n-dimensional test and trial spaces in 

the finite dimensional discretization of the eigenvalue problem (21). This delivers the finite dimensional generalized 
eigenvalue problem

λAx = Bx,

where x is the coordinate vector associated with the basis {ψ1, ψ2, . . . , ψn} and the stiffness matrices are given by

Aij = (ψi,ψ j)E(ω∗) and Bij = (ψi,ψ j)E(ω).
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Fig. 2. Geometry 1. (a) The cross sectional layout. (b) The ensemble averaged Dirichlet boundary conditions for random loading. Crosses represent displace-
ment into the page, dots out of the page.

3. The third step solves the generalized eigenvalue problem using standard procedures. Since the matrix A is symmetric 
and positive definite we apply a Cholesky factorization, A = U T U , where U is an upper triangular matrix. Then we 
write the generalized problem as a standard eigenvalue problem C y = λy where C = (U T )−1 BU−1 and y = U x. This 
problem is solved using a divide-and-conquer eigenvalue algorithm. The eigenvalues of the standard problem are the 
same as for the general problem. The eigenvectors x are computed by solving U x = y. For all operations routines from 
the Intel Math Kernel Library [15] are used.

The associated eigenfunction ũn(x) = ∑n
i=1 xiψi(x) and eigenvalue λ = V deliver the numerical approximation of the worst 

case load and the maximum energy concentration inside ω.

5. Numerical simulations

We carry out numerical approximations of the expected energy concentration P̄ N and the worst case energy concen-
tration V for (42) over four different geometries with Dirichlet boundary conditions. For each geometry we specify the 
parameters a, b, and c(x) and follow the procedures laid out in Section 4. The parameter a defines the one dimensional 
domain of the random boundary loads which are mapped to the boundary of each geometry, so a is half the perimeter of 
the geometry. Each geometry is defined by a cross-sectional area with a hole and several heterogeneities. The geometries 
are defined below in Sections 5.1–5.4. The geometries and the average ensemble load are displayed in Figs. 2a–5a. The 
computational results for each geometry are displayed in Figs. 6–9. All fields portrayed are normalized by the square root 
of the work done at the boundary of each geometry. Table 1 shows the computed values of V and P̄ N for each geometry 
as well as the number of functions from the KKL expansion for g(x, θ) that are used. All units are dimensionless. Mixed 
quadrilateral and triangle elements with bilinear and linear shape functions, respectively, are used for each computation.

5.1. Geometry 1

Geometry 1 is a square with a central hole as shown in Fig. 2a. The domain of interest ω is an annulus around the hole. 
The square has side length 2, the hole radius 0.3, and ω radius 0.7. The parameter a = 4, and b = 1. The shear modulus 
c(x) = 1000 in the inclusions and c(x) = 1 in the matrix. The ensemble average boundary displacement ḡ(x) = ±0.1, positive 
along the edges marked with dotted circles in Fig. 2b and negative along edges marked with crossed circles, and ḡ(x) = 0
along the interior boundary ∂ω∗

I in Fig. 2b. In Fig. 6 the worst case energy concentration and the associated strain and 
stress fields are compared to the average ensemble load solution and the associated strain and stress fields.

5.2. Geometry 2

Geometry 2 is a rectangle with hole to one end as shown in Fig. 3a. The domain of interest ω is an annulus around 
the hole. The rectangle has height 6 and width 2, the hole radius 0.5, and ω radius 0.85. The parameter a = 8, and b = 1. 
The shear modulus c(x) = 1000 in the inclusions and c(x) = 1 in the matrix. The ensemble average boundary displacement 
ḡ(x) = ±0.1 or 0 as shown in Fig. 3b. Here diagonal lines along edges indicate portions of the outer boundary where u = 0. 
The computed fields are displayed in Fig. 7.
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Fig. 3. Geometry 2. (a) The cross sectional layout. (b) The ensemble averaged Dirichlet boundary conditions. Crosses represent displacement into the page, 
dots out of the page.

Fig. 4. Geometry 3. (a) The cross sectional layout. (b) The ensemble averaged Dirichlet boundary conditions. Crosses represent displacement into the page, 
dots out of the page.

Fig. 5. Geometry 4. (a) The cross sectional layout. (b) The ensemble averaged Dirichlet boundary conditions. Crosses represent displacement into the page, 
dots out of the page.
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Fig. 6. Cross-section of Geometry 1. The worst case solution (a) ũ and the corresponding (c) strain and (e) stress compared to the ensemble averaged 
solution (b) ū and the corresponding (d) strain and (f) stress. (For interpretation of the references to color in this figure, the reader is referred to the web 
version of this article.)

5.3. Geometry 3

Geometry 3 is a cross with holes at all four ends as shown in Fig. 4a. The domain of interest ω is an annulus around the 
top hole. The cross has a central square of side length 6 and arms of length 7 and width 6, the holes have radius 1.5, and 
ω radius 2.5. The parameter a = 40, and b = 1. The shear modulus c(x) = 1000 in the inclusions and c(x) = 1 in the matrix. 
The ensemble average boundary displacement ḡ(x) = ±0.1 or 0 as shown in Fig. 4b. The computed fields are displayed in 
Fig. 8.
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Fig. 7. Cross-section of Geometry 2. The worst case solution (a) ũ and the corresponding (c) strain and (e) stress compared to the ensemble averaged 
solution (b) ū and the corresponding (d) strain and (f) stress. (For interpretation of the references to color in this figure, the reader is referred to the web 
version of this article.)
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Fig. 8. Cross-section of Geometry 3. The worst case solution (a) ũ and the corresponding (c) strain and (e) stress compared to the ensemble averaged 
solution (b) ū and the corresponding (d) strain and (f) stress. (For interpretation of the references to color in this figure, the reader is referred to the web 
version of this article.)
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Fig. 9. Cross-section of Geometry 4. The worst case solution (a) ũ and the corresponding (c) strain and (e) stress compared to the ensemble averaged 
solution (b) ū and the corresponding (d) strain and (f) stress. (For interpretation of the references to color in this figure, the reader is referred to the web 
version of this article.)
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Table 1
Computations of energy concentration for 
each geometry. The final column shows the 
number of functions used from the closed 
form KKL expansion given by (46).

Geometry V P̄ N ĝn , ĝ′
n

1 0.604 0.136 20, 17
2 0.695 0.149 36, 25
3 0.576 0.029 65, 63
4 0.686 0.072 54, 31

5.4. Geometry 4

Geometry 4 is an L shaped bracket with hole at the top leg as shown in Fig. 5a. The domain of interest ω is an annulus 
around the hole. The bracket has long edges of length 6, short edges of length 4, and legs of width 2, the hole has radius 
0.35, and ω radius 0.85. The parameter a = 12, and b = 1. The shear modulus c(x) = 1000 in the inclusions and c(x) = 1 in 
the matrix. The ensemble average boundary displacement ḡ(x) = ±0.1 or 0 as shown in Fig. 5b. The computed fields are 
displayed in Fig. 9.

5.5. Observations

Figs. 7a, 8a, and 9a show, as expected, that the worst case load concentrates energy around the portion of the boundary 
near the domain of interest. The overall shape of the concentration for the worst case load is influenced by the placement 
of the heterogeneities.

The expected energy concentration P̄ N is seen to be well below the worst case energy concentration V , as seen in 
Table 1. This large deviation is expected since the Markovian covariance leads to periodic boundary fluctuations (46) which 
distribute the random loads equally along the boundary. A less well-behaved covariance could close this gap somewhat; 
however, the expected energy concentration falls considerably below the largest possible energy concentration associated 
with a particular ensemble of loads.

6. Conclusions

We present a novel method for computing the worst case boundary load that imparts the maximum possible fraction 
of total energy onto a prescribed domain of interest contained within a composite structure. The method works for both 
Neumann or Dirichlet boundary conditions. The solution of the maximal energy concentration problem is given by an 
eigenvalue eigenfunction pair for the concentration eigenvalue problem. To illustrate the ideas this method is applied to 
four distinct geometries in the context of anti-plane shear. The worst case loads are compared with the expected energy 
concentration of a random ensemble of loadings specified by a Markovian covariance with closed form solution using a KKL 
expansion. The expected energy penetration of the random loadings for Markovian covariance were seen to be substantially 
less than the maximal energy concentration associated with the worst case load. The method presented here provides a 
novel way to recover a rigorous upper bound on how ‘bad’ a random ensemble of loadings could be. The methods developed 
here can be used in evaluating and identifying worst case random loads with large energy concentration.

Alternatively one can apply these methods to evaluate the ability of a composite geometry, such as a functionally graded 
composite, to prevent energy penetration to a particular interior subdomain. This approach can then be used as a design 
tool to find the design most resistant to the worst case load.
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